Logo Courage Library

Algebra

SSC-CGL Exams

Courage Library Logo

1. Overview

Algebra forms a key part of SSC CGL Quant — questions often test your grasp of identities, factorization, and equations through smart simplifications. With the right tricks, you can solve even tough algebraic problems in under 30 seconds.

2. Basic Algebraic Identities

Memorize and understand these — SSC repeatedly uses them for simplification:

No. Identity Expansion
(1) (a + b)² a² + 2ab + b²
(2) (a - b)² a² - 2ab + b²
(3) (a + b)(a - b) a² - b²
(4) (a + b + c)² a² + b² + c² + 2(ab + bc + ca)
(5) a³ + b³ (a + b)(a² - ab + b²)
(6) a³ - b³ (a - b)(a² + ab + b²)
(7) (a + b)³ a³ + 3a²b + 3ab² + b³
(8) (a - b)³ a³ - 3a²b + 3ab² - b³

Example 1

If a + b = 10 and ab = 21, find a² + b².

(a + b)² = a² + 2ab + b²

100 = a² + b² + 42 ⇒ a² + b² = 58

a² + b² = 58

Example 2

If a - b = 4 and ab = 45, find a² + b².

(a - b)² = a² + b² - 2ab ⇒ 16 = a² + b² - 90 ⇒ a² + b² = 106

a² + b² = 106

3. Factorization

Factorization means breaking algebraic expressions into simpler products.

Type Formula
Difference of squares a² - b² = (a + b)(a - b)
Perfect square trinomials x² + 2xy + y² = (x + y)²
Cubic forms a³ ± b³ = (a ± b)(a² ∓ ab + b²)
Common factor Take out common term
Middle term splitting For quadratics like ax² + bx + c

Example 3

Factorize x² + 5x + 6

→ Split middle term: 2 + 3 = 5

x² + 2x + 3x + 6 = (x + 2)(x + 3)

(x + 2)(x + 3)

Example 4

Factorize 9x² - 25y²

= (3x + 5y)(3x - 5y)

(3x + 5y)(3x - 5y)

4. Simplification

Algebraic simplification involves reducing using identities, cancellation, and substitution.

Example 5

If x + 1/x = 3, find x² + 1/x².

(x + 1/x)² = x² + 1/x² + 2 ⇒ 9 = x² + 1/x² + 2 ⇒ x² + 1/x² = 7

7

Example 6

If x + 1/x = 4, find x³ + 1/x³.

(x + 1/x)³ = x³ + 1/x³ + 3(x + 1/x)

64 = x³ + 1/x³ + 12 ⇒ x³ + 1/x³ = 52

52

5. Linear Equations

A linear equation is of the form:

ax + b = 0

Solution: x = -b/a

Example 7

Solve: 5x - 10 = 0

x = 10/5 = 2

x = 2

Example 8

Solve the pair: 2x + 3y = 12 and 3x - 2y = 5

Multiply first by 2 and second by 3 to eliminate y:

4x + 6y = 24

9x - 6y = 15

Add ⇒ 13x = 39 ⇒ x = 3

Substitute ⇒ 2(3) + 3y = 12 ⇒ y = 2

x = 3, y = 2

6. Quadratic Equations

Quadratic Equation:

ax² + bx + c = 0

x = [-b ± √(b² - 4ac)] / 2a

Example 9

Solve: x² - 5x + 6 = 0

x = [5 ± √(25 - 24)] / 2 = (5 ± 1)/2

x = 3 or x = 2

Example 10

Solve: 2x² - 7x + 3 = 0

x = [7 ± √(49 - 24)] / 4 = (7 ± 5)/4

x = 3 or ½

7. Short Tricks for SSC

Type Shortcut Example
x + 1/x = a x² + 1/x² = a² - 2 If 3 → 7
x + 1/x = a x³ + 1/x³ = a³ - 3a If 4 → 52
a² + b² (a + b)² - 2ab -
a³ + b³ (a + b)³ - 3ab(a + b) -
Two roots of eqn Product = c/a, Sum = -b/a x² - 5x + 6 = 0 ⇒ 2,3
Discriminant b² - 4ac > 0 → real roots Used to check type of roots

8. SSC-Level Examples

Example 11

If a + b = 7 and ab = 10, find a³ + b³.

(a + b)³ - 3ab(a + b) = 343 - 210 = 133

133

Example 12

If x + 1/x = 5, find x⁴ + 1/x⁴.

(x² + 1/x²) = 25 - 2 = 23

x⁴ + 1/x⁴ = 23² - 2 = 527

527

Example 13

If x - 1/x = 2, find x² + 1/x².

(x - 1/x)² = x² + 1/x² - 2 ⇒ 4 = x² + 1/x² - 2 ⇒ 6

6

9. Practice Section

Q1. If a + b = 9 and ab = 20, find a² + b².

View Answer

(a + b)² = a² + 2ab + b² ⇒ 81 = a² + b² + 40 ⇒ a² + b² = 41

41

Q2. If x + 1/x = 6, find x³ + 1/x³.

View Answer

= 6³ − 3×6 = 216 − 18 = 198

198

Q3. Solve: x² - 11x + 24 = 0

View Answer

x = [11 ± √(121 − 96)] / 2 = (11 ± 5)/2 ⇒ 8, 3

x = 8 or 3

Q4. Simplify: (a² - b²)/(a - b)

View Answer

= (a + b)(a - b)/(a - b) = a + b

a + b

Q5. If x + 1/x = 2, find x² + 1/x².

View Answer

= 2² − 2 = 2

2

Q6. Find sum & product of roots of 2x² - 5x + 3 = 0.

View Answer

Sum = −b/a = 5/2, Product = c/a = 3/2

Sum = 5/2, Product = 3/2

Q7. If a + b = 12 and ab = 35, find a³ + b³.

View Answer

(a + b)³ − 3ab(a + b) = 1728 − 1260 = 468

468

10. Quick Recap Table

Concept Formula Tip
a² + b² (a + b)² − 2ab Most-used
a³ + b³ (a + b)³ − 3ab(a + b) Remember signs
x + 1/x = a x² + 1/x² = a² − 2 Core identity
Quadratic roots x = [-b ± √(b² − 4ac)] / 2a Always simplify
Product & Sum P = c/a, S = -b/a Helps check
Factorization Take out common term or use identities Save time

You've completed Article 9: Algebra!

Courage Tip: Focus on pattern recognition — SSC questions often hide a simple identity behind a complex-looking expression. Spot the identity → apply → simplify fast.

Previous
Developed By Jan Mohammad
Next

Start Your SSC CGL Journey Now!

Join Courage Library to experience disciplined study and expert support.

Be a Couragian!